Operatorial subordination in free probability and loop products of graphs

Romuald Lenczewski

Department of Mathematics and Computer Science Wroclaw University of Technology

10th Workshop: Noncommutative Harmonic Analysis with Applications to Probability

Bedlewo 2007
(1) analytic subordination for $\mu \boxplus \nu$ and $\mu \boxtimes \nu$
(2) subordination in terms of s-free convolutions
(3) 'complete' decompositions of $\mu \boxplus \nu$ and $\mu \boxtimes \nu$
(9) operatorial subordination
(6) product graphs $\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}$ for independence \mathcal{I}
(0) addition theorem for $\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}$
(1) loop products of graphs $\mathcal{G}_{1} \mathcal{I}_{\mathcal{O}} \mathcal{G}_{2}$
(8) multiplication theorem for $\mathcal{G}_{1} \mathcal{I}_{\circlearrowright} \mathcal{G}_{2}$

Addition

Aspects of addition of noncommutative random variables:
(1) independence \mathcal{I}
(2) addition of random variables $X+Y$
(3) additive convolution $\mu+_{\mathcal{I}} \nu$
(9) product of graphs $\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}$
(©) Addition Theorem: moments of $\mu+_{\mathcal{I}} \nu=\#$ (walks in $\left.\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}\right)$

Let μ - probability measure on \mathbb{R} and $z \in \mathbb{C}^{+}$. Useful transforms:
(1) Cauchy transform

$$
\begin{aligned}
G_{\mu}(z) & =\int_{-\infty}^{\infty} \frac{\mu(d x)}{z-x} \\
& =\sum_{n=0}^{\infty} \mu\left(X^{n}\right) z^{-n-1} \quad \text { (if } \mu \text { has moments) }
\end{aligned}
$$

(2) Reciprocal Cauchy transform

$$
F_{\mu}(z)=\frac{1}{G_{\mu}(z)}
$$

(3) K-transform

$$
K_{\mu}(z)=z-F_{\mu}(z)
$$

Analytic subordination for $\mu \boxplus \nu$

Theorem [Voiculescu 1993 -compact, Biane 1998 -general]

For probability measures μ, ν on \mathbb{R}, it holds that

$$
F_{\mu \boxplus \nu}(z)=F_{\mu}\left(F_{1}(z)\right)=F_{\nu}\left(F_{2}(z)\right)
$$

where $z \in \mathbb{C}_{+}$and F_{1}, F_{2} are reciprocal Cauchy transforms of some probability measures on \mathbb{R}.

Convolution $\mu \boxminus \nu$

Definition

The functions F_{1} and F_{2} define unique probability measures on \mathbb{R}. Therefore, we propose to introduce a binary operation \boxtimes on $\mathcal{M}_{\mathbb{R}}$, namely

$$
F_{1}(z)=F_{\nu \boxplus \mu}(z) \quad \text { and } \quad F_{2}(z)=F_{\mu \boxplus \nu}(z)
$$

The convolution $\mu \boxplus \nu$ ('half' of $\mu \boxplus \nu$) will be called the s-free additive convolution.

Subordination reformulated

Proposition

Subordination equations can then be written in terms of s-free convolutions:

$$
\mu \boxplus \nu=\mu \triangleright(\nu \boxplus \mu)=\nu \triangleright(\mu \boxplus \nu)
$$

where $\triangleright-$ monotone additive convolution since we have $F_{\mu \triangleright \nu}(z)=F_{\mu}\left(F_{\nu}(z)\right)$.

Assumptions:
(1) $(\mathcal{A}, \varphi, \psi)$ - unital algebra with a pair of linear normalized functionals
(2) \mathcal{A}_{1} - unital subalgebra of \mathcal{A}
(3) \mathcal{A}_{2} - non-unital subalgebra with an 'internal' unit 1_{2}, i.e. $1_{2} b=b=b 1_{2}$ for every $b \in \mathcal{A}_{2}$.

Definition

The pair $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ is free with subordination, or s-free, with respect to (φ, ψ), where $\psi\left(1_{2}\right)=1$, if
(ii) $\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=0$ whenever $a_{j} \in \mathcal{A}_{i_{j}}^{0}$ and $i_{1} \neq i_{2} \neq \ldots \neq i_{n}$
(ii) $\varphi\left(w_{1} 1_{2} w_{2}\right)=\varphi\left(w_{1} w_{2}\right)-\varphi\left(w_{2}\right) \varphi\left(w_{2}\right)$ for any
$w_{1}, w_{2} \in \operatorname{alg}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$,
where $\mathcal{A}_{1}^{0}=\mathcal{A}_{1} \cap \operatorname{ker} \varphi$ and $\mathcal{A}_{2}^{0}=\mathcal{A}_{2} \cap \operatorname{ker} \psi$.

Orthogonal additive convolution

Definition

Let μ and ν be probability measures. The orthogonal additive convolution is defined by the reciprocal Cauchy transform

$$
F_{\mu \vdash \nu}(z)=F_{\mu}\left(F_{\nu}(z)\right)-F_{\nu}(z)+z
$$

Equivalently,

$$
K_{\mu \vdash \nu}(z)=K_{\mu}\left(F_{\nu}(z)\right)=K_{\mu}\left(z-K_{\nu}(z)\right)
$$

Orthogonal independence

Definition

Let $(\mathcal{A}, \varphi, \psi)$ be unital algebra with a pair of linear normalized functionals and let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be non-unital subalgebras of \mathcal{A}. We say that \mathcal{A}_{2} is orthogonal to \mathcal{A}_{1} with respect to (φ, ψ) if

$$
\begin{aligned}
\varphi\left(b w_{2}\right) & =\varphi\left(w_{1} b\right)=0 \\
\varphi\left(w_{1} a_{1} b a_{2} w_{2}\right) & =\psi(b) \varphi\left(w_{1} a_{1} a_{2} w_{2}\right) \\
& -\psi(b) \varphi\left(w_{1} a_{1}\right) \varphi\left(a_{2} w_{2}\right)
\end{aligned}
$$

for any $a_{1}, a_{2} \in \mathcal{A}_{1}, b \in \mathcal{A}_{2}$ and any elements w_{1}, w_{2} of the unital algebra $\operatorname{alg}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$.

Decompositions of $\mu \mathbb{H} \nu$ and $\mu \boxplus \nu$

Theorem [R.L. 2006]

If $\mu, \nu \in \mathcal{M}_{\mathbb{R}_{+}}$are compactly supported, then we have 'complete' decompositions

$$
\begin{aligned}
& \mu \boxplus \nu=\mu \vdash(\nu \vdash(\mu \vdash(\nu \vdash \ldots)))) \\
& \mu \boxplus \nu=\mu \triangleright(\nu \vdash(\mu \vdash(\nu \vdash \ldots))))
\end{aligned}
$$

where the right hand side is understood as the weak limit.

Decompositions of $\mu \mathbb{H} \nu$ and $\mu \boxplus \nu$

Corollary

The transforms of $\mu \boxminus \nu$ and $\mu \boxplus \nu$ can be written in the 'continued composition form'

$$
\begin{aligned}
K_{\mu \boxplus \nu}(z) & =K_{\mu}\left(z-K_{\nu}\left(z-K_{\mu}(\ldots)\right)\right) \\
F_{\mu \boxplus \nu}(z) & =F_{\mu}\left(z-K_{\nu}\left(z-K_{\mu}(\ldots)\right)\right)
\end{aligned}
$$

where the right-hand side is understood as the uniform limit on compact subsets of \mathbb{C}_{+}.

Operatorial subordination

Theorem [R.L. 2006]

If $X, Y \in \mathcal{B}(\mathcal{H})$ are free and self-adjoint, where $\mathcal{H}=\mathcal{H}_{1} * \mathcal{H}_{2}$, then one can construct self-adjoint operators $s, S \in \mathcal{B}(\mathcal{H})$ such that
(i) $X+Y=s+S$
(ii) φ-distribution of s is μ
(iii) φ-distribution of S is $\nu \boxplus \mu$
(iv) (s, S) is monotone independent w.r.t. φ.

Moreover, there exists a sequence of orthogonally independent operators corresponding to the 'complete' decomposition of $\mu \boxplus \nu$.

Additive convolutions versus $\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}$

We have the following correspondence between additive convolutions or probability measures on the real line and products of rooted graphs"'
(1) monotone $-\mu \triangleright \nu$ - comb product
(2) boolean $-\mu \uplus \nu$-star product
(3) free - $\mu \boxplus \nu$ - free product
(9) orthogonal - $\mu \vdash \nu$ - orthogonal product
(0) s-free - $\mu \boxtimes \nu$-s-free product

Addition theorem

Theorem [Accardi, R.L., Sałapata 2006]

Let $\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}$ be naturally colored and let μ, ν be spectral distributions of $\mathcal{G}_{1}, \mathcal{G}_{2}$. If \mathcal{I} stands for monotone, boolean, orthogonal, s-free and free, and Z is the adjacency matrix of $\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}$, then

$$
\varphi\left(Z^{n}\right)=M_{\mu+\mathcal{I} \nu}(n)=\left|W_{n}(e)\right| .
$$

where $W_{n}(e)$ is the set of rooted walks on $\mathcal{G}_{1} \mathcal{I} \mathcal{G}_{2}$ of length n. Moreover, if $Z=S_{1}+S_{2}$ is the decomposition induced by the coloring, then $\left(S_{1}, S_{2}\right)$ is \mathcal{I}-independent.

Let μ be a probability measure on $\mathbb{R}_{+}=[0, \infty)$ and $z \in \mathbb{C} \backslash \mathbb{R}_{+}$. Useful transforms for multiplicative convolutions:
(1)

$$
\psi_{\mu}(z)=\int_{\mathbb{R}_{+}} \frac{z t}{1-z t} d \mu(t)=\sum_{n=1}^{\infty} \mu\left(X^{n}\right) z^{n}
$$

(2)

$$
\eta_{\mu}(z)=\frac{\psi_{\mu}(z)}{1+\psi_{\mu}(z)}
$$

(3)

$$
\rho_{\mu}(z)=\frac{\eta_{\mu}(z)}{z}
$$

Analytic subordination for μ 区 ν

Theorem [Biane 1998]

For probability measures μ, ν on \mathbb{R}_{+}it holds that

$$
\eta_{\mu \boxtimes \nu}=\eta_{\mu}\left(\eta_{1}(z)\right)=\eta_{\nu}\left(\eta_{2}(z)\right)
$$

for $z \in \mathbb{C} \backslash \mathbb{R}_{+}$, where η_{1}, η_{2} are η-transforms of some probability measures on \mathbb{R}_{+}.

Convolution $\mu \boxtimes \nu$

Definition

The functions η_{1} and η_{2} define unique probability measures on \mathbb{R}_{+} which are not concentrated at zero. This gives a binary operation \square on $\mathcal{M}_{\mathbb{R}_{+}} \backslash\left\{\delta_{0}\right\}$, namely

$$
\eta_{1}(z)=\eta_{\nu \square \mu}(z) \quad \text { and } \quad \eta_{2}(z)=\eta_{\mu \boxtimes \nu}(z)
$$

The convolution $\mu \boxtimes \nu$ is called the s-free multiplicative convolution.

Subordination reformulated

Proposition

The subordination equations can be written in terms of s-free multiplicative convolutions as

$$
\mu \boxtimes \nu=\mu \circlearrowright(\nu \boxtimes \mu)=\nu \circlearrowright(\mu \boxtimes \nu)
$$

since the monotone multiplicative convolution (Bercovici) is defined by the equation

$$
\eta_{\mu \circlearrowright \nu}(z)=\eta_{\mu}\left(\eta_{\nu}(z)\right)
$$

for $z \in \mathbb{C} \backslash \mathbb{R}_{+}$and $\mu, \nu \in \mathcal{M}_{\mathbb{R}_{+}}$.

Decomposition of $\mu \boxtimes \nu$ and $\mu \boxtimes \nu$

Theorem [R.L. 2007]

For compactly supported $\mu, \nu \in \mathcal{M}_{\mathbb{R}_{+}}$, we have complete decompositions

$$
\begin{aligned}
& \mu \boxtimes \nu=\mu \angle(\nu \angle(\mu \angle(\nu \angle(\ldots)))), \\
& \mu \boxtimes \nu=\mu \circlearrowright(\nu \angle(\mu \angle(\nu \angle(\ldots)))),
\end{aligned}
$$

and their transforms can be written in the 'continued composition form':

$$
\begin{aligned}
\rho_{\mu \boxtimes \nu}(z) & =\rho_{\mu}\left(z \rho_{\nu}\left(z \rho_{\nu}\left(z \rho_{\mu}(\ldots)\right)\right)\right), \\
\eta_{\mu \boxtimes \nu}(z) & =\eta_{\mu}\left(z \rho_{\nu}\left(z \rho_{\mu}\left(z \rho_{\nu}(\ldots)\right)\right),\right.
\end{aligned}
$$

where the right-hand sides are understood as the uniform limits on compact subsets of $\mathbb{C} \backslash \mathbb{R}_{+}$.

Operatorial subordination

Theorem [R.L. 2007]

If $X, Y \in \mathcal{B}(\mathcal{H})$ are positive and free, where $\mathcal{H}=\mathcal{H}_{1} * \mathcal{H}_{2}$, then there exist positive z, Z such that
(i) $\sqrt{X} Y \sqrt{X}=\sqrt{z} Z \sqrt{z}$
(ii) φ-distribution of z is μ
(iii) φ-distribution of Z is $\nu \square \mu$
(iv) $(z-1, Z-1)$ is monotone independent w.r.t. φ.

Moreover, there exists a sequence of orthogonally independent operators corresponding to the 'complete' decomposition of $\mu \boxtimes \nu$.

Multiplicative convolutions versus $\mathcal{G}_{1} \mathcal{I}_{\ell} \mathcal{G}_{2}$

We have the following correspondence:
(1) monotone independence - $\mu \circlearrowright \nu$ - comb loop product
(2) boolean independence - μ 㘢 ν-star loop product
(3) freeness - $\mu \boxtimes \nu$ - free product
(9) orthogonal independence - $\mu \angle \nu$ - orthogonal loop product
(3) s-freeness - $\mu \square \nu$-s-free loop product

Comb loop product of graphs

Star loop product of graphs

Orthogonal loop product of graphs

s-free loop product of graphs

Multiplication theorem

Notations:
(1) $\mathcal{G}_{1} \mathcal{I}_{\ell} \mathcal{G}_{2}$ naturally colored loop product of graphs corresponding to \mathcal{I}-independence
(2) μ, ν-spectral distributions of $\mathcal{G}_{1}, \mathcal{G}_{2}$
(3) $D_{2 n}(e)$ - rooted alternating double return walks on $\mathcal{G}_{1} \mathcal{I}_{\ell} \mathcal{G}_{2}$ of length $2 n$.

Theorem [R.L. 2007]

If \mathcal{I} refers to monotone, boolean, orthogonal, s-free and free independence, and Z is the adjacency matrix of $\mathcal{G}_{1} \mathcal{I}_{\ell} \mathcal{G}_{2}$, then

$$
N_{Z}(n)=N_{\mu_{1} \times_{\mathcal{I}} \mu_{2}}(n)=\left|D_{2 n}(e)\right| .
$$

Moreover, if $Z=R_{1}+R_{2}$ is the decomposition induced by the coloring, then $\left(R_{1}-1, R_{2}-1\right)$ is \mathcal{I}-independent.

References

(1) R. Lenczewski, Decompositions of the free additive convolution, J. Funct. Anal. 246 (2007), 330-365.
(2) L. Accardi, R. Lenczewski, R. Sałapata, Decompositions of the free product of graphs, IDAQP (2007), to appear,
(3) R. Lenczewski, Operators related to subordination for free multiplicative convolutions, Indiana Univ. Math. J. (2008), to appear.

