Operatorial subordination in free probability and loop products of graphs

Romuald Lenczewski

Department of Mathematics and Computer Science Wroclaw University of Technology

10th Workshop: Noncommutative Harmonic Analysis with Applications to Probability Bedlewo 2007

- ${\small \bigcirc} \ \ \text{analytic subordination for } \mu \boxplus \nu \ \text{and} \ \ \mu \boxtimes \nu$
- 2 subordination in terms of *s*-free convolutions
- ${\small \textbf{ (somplete' decompositions of } \mu \boxplus \nu \text{ and } \mu \boxtimes \nu}$
- operatorial subordination
- **(**) product graphs $\mathcal{G}_1 \mathcal{I} \mathcal{G}_2$ for independence \mathcal{I}
- **()** addition theorem for $\mathcal{G}_1 \mathcal{I} \mathcal{G}_2$
- \bigcirc loop products of graphs $\mathcal{G}_1 \mathcal{I}_{\bigcirc} \mathcal{G}_2$
- 0 multiplication theorem for $\mathcal{G}_1\mathcal{I}_{\circlearrowright}\mathcal{G}_2$

Aspects of addition of noncommutative random variables:

- $\textcircled{0} \ \text{independence} \ \mathcal{I}$
- 2 addition of random variables X + Y
- $\textbf{3} \text{ additive convolution } \mu +_{\mathcal{I}} \nu$
- () product of graphs $\mathcal{G}_1 \mathcal{I} \mathcal{G}_2$
- **3** Addition Theorem: moments of $\mu +_{\mathcal{I}} \nu = \#$ (walks in $\mathcal{G}_1 \mathcal{I} \mathcal{G}_2$)

Transforms

Let μ – probability measure on \mathbb{R} and $z \in \mathbb{C}^+$. Useful transforms: Ouchy transform

$$G_{\mu}(z) = \int_{-\infty}^{\infty} \frac{\mu(dx)}{z - x}$$
$$= \sum_{n=0}^{\infty} \mu(X^{n}) z^{-n-1} \text{ (if } \mu \text{ has moments)}$$

2 Reciprocal Cauchy transform

$$F_{\mu}(z) = rac{1}{G_{\mu}(z)}$$

8 K-transform

$$K_{\mu}(z) = z - F_{\mu}(z)$$

Theorem [Voiculescu 1993 -compact, Biane 1998 -general]

For probability measures μ , ν on \mathbb{R} , it holds that

$$F_{\mu\boxplus\nu}(z) = F_{\mu}(F_1(z)) = F_{\nu}(F_2(z))$$

where $z \in \mathbb{C}_+$ and F_1, F_2 are reciprocal Cauchy transforms of some probability measures on \mathbb{R} .

The functions F_1 and F_2 define unique probability measures on \mathbb{R} . Therefore, we propose to introduce a binary operation \square on $\mathcal{M}_{\mathbb{R}}$, namely

$$F_1(z) = F_{\nu \boxplus \mu}(z)$$
 and $F_2(z) = F_{\mu \boxplus \nu}(z)$.

The convolution $\mu \boxplus \nu$ ('half' of $\mu \boxplus \nu$) will be called the *s*-free additive convolution.

Proposition

Subordination equations can then be written in terms of s-free convolutions:

$$\mu \boxplus \nu = \mu \rhd (\nu \boxplus \mu) = \nu \rhd (\mu \boxplus \nu)$$

where \rhd – monotone additive convolution since we have $F_{\mu \rhd \nu}(z) = F_{\mu}(F_{\nu}(z)).$

Assumptions:

- 2 \mathcal{A}_1 unital subalgebra of \mathcal{A}
- 3 A_2 non-unital subalgebra with an 'internal' unit 1_2 , i.e. $1_2b = b = b1_2$ for every $b \in A_2$.

The pair
$$(\mathcal{A}_1, \mathcal{A}_2)$$
 is free with subordination, or s-free, with respect to (φ, ψ) , where $\psi(1_2) = 1$, if
(ii) $\varphi(a_1a_2...a_n) = 0$ whenever $a_j \in \mathcal{A}_{i_j}^0$ and $i_1 \neq i_2 \neq ... \neq i_n$
(ii) $\varphi(w_11_2w_2) = \varphi(w_1w_2) - \varphi(w_2)\varphi(w_2)$ for any
 $w_1, w_2 \in \operatorname{alg}(\mathcal{A}_1, \mathcal{A}_2)$,
where $\mathcal{A}_1^0 = \mathcal{A}_1 \cap \ker \varphi$ and $\mathcal{A}_2^0 = \mathcal{A}_2 \cap \ker \psi$.

Let μ and ν be probability measures. The *orthogonal additive convolution* is defined by the reciprocal Cauchy transform

$$F_{\mu \vdash \nu}(z) = F_{\mu}(F_{\nu}(z)) - F_{\nu}(z) + z$$

Equivalently,

$$\mathit{K}_{\mu \vdash \nu}(z) = \mathit{K}_{\mu}(\mathit{F}_{\nu}(z)) = \mathit{K}_{\mu}(z - \mathit{K}_{\nu}(z))$$

Let $(\mathcal{A}, \varphi, \psi)$ be unital algebra with a pair of linear normalized functionals and let $\mathcal{A}_1, \mathcal{A}_2$ be non-unital subalgebras of \mathcal{A} . We say that \mathcal{A}_2 is *orthogonal* to \mathcal{A}_1 with respect to (φ, ψ) if

$$\begin{aligned} \varphi(bw_2) &= \varphi(w_1b) = 0\\ \varphi(w_1a_1ba_2w_2) &= \psi(b)\varphi(w_1a_1a_2w_2)\\ &- \psi(b)\varphi(w_1a_1)\varphi(a_2w_2) \end{aligned}$$

for any $a_1, a_2 \in A_1$, $b \in A_2$ and any elements w_1, w_2 of the unital algebra $alg(A_1, A_2)$.

Theorem [R.L. 2006]

If $\mu,\nu\in\mathcal{M}_{\mathbb{R}_+}$ are compactly supported, then we have 'complete' decompositions

$$\mu \boxplus \nu = \mu \vdash (\nu \vdash (\mu \vdash (\nu \vdash \ldots))))$$

$$\mu \boxplus \nu = \mu \vdash (\nu \vdash (\mu \vdash (\nu \vdash \ldots))))$$

where the right hand side is understood as the weak limit.

Corollary

The transforms of $\mu \boxplus \nu$ and $\mu \boxplus \nu$ can be written in the 'continued composition form'

$$\begin{aligned} & \mathcal{K}_{\mu \boxplus \nu}(z) = \mathcal{K}_{\mu}(z - \mathcal{K}_{\nu}(z - \mathcal{K}_{\mu}(\ldots))) \\ & \mathcal{F}_{\mu \boxplus \nu}(z) = \mathcal{F}_{\mu}(z - \mathcal{K}_{\nu}(z - \mathcal{K}_{\mu}(\ldots))) \end{aligned}$$

where the right-hand side is understood as the uniform limit on compact subsets of $\mathbb{C}_+.$

Theorem [R.L. 2006]

If $X, Y \in \mathcal{B}(\mathcal{H})$ are free and self-adjoint, where $\mathcal{H} = \mathcal{H}_1 * \mathcal{H}_2$, then one can construct self-adjoint operators $s, S \in \mathcal{B}(\mathcal{H})$ such that (i) X + Y = s + S(ii) φ -distribution of s is μ (iii) φ -distribution of S is $\nu \boxplus \mu$ (iv) (s, S) is monotone independent w.r.t. φ . Moreover, there exists a sequence of orthogonally independent operators corresponding to the 'complete' decomposition of $\mu \boxplus \nu$. We have the following correspondence between additive convolutions or probability measures on the real line and products of rooted graphs"'

- **1** monotone $\mu \succ \nu$ comb product
- 2 boolean $\mu \uplus \nu$ star product
- 3 free $\mu \boxplus \nu$ free product
- ${\small {\small { \bullet } \hspace{-.05in} \bullet }} {\small {\rm orthogonal \mu \vdash \nu orthogonal product } }$
- ${\small {\small {\small 5}}} \hspace{0.1 cm} {\rm s-free \mu \boxplus \nu s-free \ product}$

Theorem [Accardi, R.L., Sałapata 2006]

Let $\mathcal{G}_1\mathcal{I}\mathcal{G}_2$ be naturally colored and let μ, ν be spectral distributions of $\mathcal{G}_1, \mathcal{G}_2$. If \mathcal{I} stands for monotone, boolean, orthogonal, s-free and free, and Z is the adjacency matrix of $\mathcal{G}_1\mathcal{I}\mathcal{G}_2$, then

$$\varphi(Z^n) = M_{\mu + \tau\nu}(n) = |W_n(e)|.$$

where $W_n(e)$ is the set of rooted walks on $\mathcal{G}_1\mathcal{I}\mathcal{G}_2$ of length *n*. Moreover, if $Z = S_1 + S_2$ is the decomposition induced by the coloring, then (S_1, S_2) is \mathcal{I} -independent.

Transforms

1

2

3

Let μ be a probability measure on $\mathbb{R}_+ = [0, \infty)$ and $z \in \mathbb{C} \setminus \mathbb{R}_+$. Useful transforms for multiplicative convolutions:

$$\psi_{\mu}(z) = \int_{\mathbb{R}_+} \frac{zt}{1 - zt} d\mu(t) = \sum_{n=1}^{\infty} \mu(X^n) z^n$$

$$\eta_{\mu}(z) = \frac{\psi_{\mu}(z)}{1 + \psi_{\mu}(z)}$$

$$\rho_{\mu}(z) = rac{\eta_{\mu}(z)}{z}$$

Theorem [Biane 1998]

For probability measures μ , ν on \mathbb{R}_+ it holds that

$$\eta_{\mu\boxtimes\nu} = \eta_{\mu}(\eta_1(z)) = \eta_{\nu}(\eta_2(z))$$

for $z \in \mathbb{C} \setminus \mathbb{R}_+$, where η_1, η_2 are η -transforms of some probability measures on \mathbb{R}_+ .

The functions η_1 and η_2 define unique probability measures on \mathbb{R}_+ which are not concentrated at zero. This gives a binary operation \square on $\mathcal{M}_{\mathbb{R}_+} \setminus \{\delta_0\}$, namely

$$\eta_1(z) = \eta_{\nu \boxtimes \mu}(z) \quad \text{and} \quad \eta_2(z) = \eta_{\mu \boxtimes \nu}(z).$$

The convolution $\mu \square \nu$ is called the *s*-free multiplicative convolution.

Proposition

The subordination equations can be written in terms of s-free multiplicative convolutions as

$$\mu \boxtimes \nu = \mu \circlearrowright (\nu \boxtimes \mu) = \nu \circlearrowright (\mu \boxtimes \nu)$$

since the monotone multiplicative convolution (Bercovici) is defined by the equation

$$\eta_{\mu \circlearrowright \nu}(z) = \eta_{\mu}(\eta_{\nu}(z))$$

for $z \in \mathbb{C} \setminus \mathbb{R}_+$ and $\mu, \nu \in \mathcal{M}_{\mathbb{R}_+}$.

Theorem [R.L. 2007]

For compactly supported $\mu,\nu\in\mathcal{M}_{\mathbb{R}_+},$ we have complete decompositions

$$\mu \boxtimes \nu = \mu \angle (\nu \angle (\mu \angle (\nu \angle (\dots)))),$$

$$\mu \boxtimes \nu = \mu \circlearrowright (\nu \angle (\mu \angle (\nu \angle (\dots)))),$$

and their transforms can be written in the 'continued composition form':

$$\begin{aligned} \rho_{\mu \boxtimes \nu}(z) &= \rho_{\mu}(z\rho_{\nu}(z\rho_{\mu}(\ldots)))), \\ \eta_{\mu \boxtimes \nu}(z) &= \eta_{\mu}(z\rho_{\nu}(z\rho_{\mu}(z\rho_{\nu}(\ldots)))), \end{aligned}$$

where the right-hand sides are understood as the uniform limits on compact subsets of $\mathbb{C}\backslash\mathbb{R}_+.$

Theorem [R.L. 2007]

If $X, Y \in \mathcal{B}(\mathcal{H})$ are positive and free, where $\mathcal{H} = \mathcal{H}_1 * \mathcal{H}_2$, then there exist positive z, Z such that (i) $\sqrt{X}Y\sqrt{X} = \sqrt{z} Z\sqrt{z}$ (ii) φ -distribution of z is μ (iii) φ -distribution of Z is $\nu \square \mu$ (iv) (z - 1, Z - 1) is monotone independent w.r.t. φ . Moreover, there exists a sequence of orthogonally independent operators corresponding to the 'complete' decomposition of $\mu \boxtimes \nu$. We have the following correspondence:

- $\textbf{0} \quad \text{monotone independence } \mu \circlearrowright \nu \text{ comb loop product}$
- 2 boolean independence $\mu \circledast \nu$ star loop product
- 3 freeness $\mu \boxtimes \nu$ free product
- **(**) orthogonal independence $\mu \angle \nu$ orthogonal loop product
- **③** s-freeness $\mu \boxtimes \nu$ s-free loop product

Comb loop product of graphs

Star loop product of graphs

Orthogonal loop product of graphs

Free product of graphs

Notations:

- G₁I_ℓG₂ naturally colored loop product of graphs corresponding to I-independence
- 2 μ, ν spectral distributions of $\mathcal{G}_1, \mathcal{G}_2$
- **3** $D_{2n}(e)$ rooted alternating double return walks on $\mathcal{G}_1 \mathcal{I}_\ell \mathcal{G}_2$ of length 2n.

Theorem [R.L. 2007]

If \mathcal{I} refers to monotone, boolean, orthogonal, s-free and free independence, and Z is the adjacency matrix of $\mathcal{G}_1 \mathcal{I}_\ell \mathcal{G}_2$, then

$$N_Z(n) = N_{\mu_1 \times_{\mathcal{I}} \mu_2}(n) = |D_{2n}(e)|.$$

Moreover, if $Z = R_1 + R_2$ is the decomposition induced by the coloring, then $(R_1 - 1, R_2 - 1)$ is \mathcal{I} -independent.

- R. Lenczewski, Decompositions of the free additive convolution, J. Funct. Anal. 246 (2007), 330-365.
- L. Accardi, R. Lenczewski, R. Sałapata, Decompositions of the free product of graphs, IDAQP (2007), to appear,
- R. Lenczewski, Operators related to subordination for free multiplicative convolutions, Indiana Univ. Math. J. (2008), to appear.