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Topics

1 analytic subordination for µ‘ ν and µb ν

2 subordination in terms of s-free convolutions
3 ‘complete’ decompositions of µ‘ ν and µb ν

4 operatorial subordination
5 product graphs G1IG2 for independence I
6 addition theorem for G1IG2

7 loop products of graphs G1IœG2

8 multiplication theorem for G1IœG2
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Addition

Aspects of addition of noncommutative random variables:
1 independence I
2 addition of random variables X ` Y

3 additive convolution µ`I ν

4 product of graphs G1IG2

5 Addition Theorem: moments of µ`I ν = # (walks in G1IG2)
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Transforms

Let µ – probability measure on R and z P C`. Useful transforms:
1 Cauchy transform

Gµpzq “

ż 8

´8

µpdxq

z ´ x

“

8
ÿ

n“0

µpX nqz´n´1 pif µ has momentsq

2 Reciprocal Cauchy transform

Fµpzq “
1

Gµpzq

3 K-transform
Kµpzq “ z ´ Fµpzq
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Analytic subordination for µ ‘ ν

Theorem [Voiculescu 1993 -compact, Biane 1998 -general]

For probability measures µ, ν on R, it holds that

Fµ‘ νpzq “ FµpF1pzqq “ FνpF2pzqq

where z P C` and F1,F2 are reciprocal Cauchy transforms of some
probability measures on R.
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Convolution µ i ν

Definition
The functions F1 and F2 define unique probability measures on R.
Therefore, we propose to introduce a binary operation i on MR,
namely

F1pzq “ Fνiµpzq and F2pzq “ Fµi νpzq.

The convolution µi ν (‘half’ of µ‘ ν) will be called the s-free
additive convolution.
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Subordination reformulated

Proposition
Subordination equations can then be written in terms of s-free
convolutions:

µ‘ ν “ µ Ź pν i µq “ ν Ź pµi νq

where Ź – monotone additive convolution since we have
FµŹνpzq “ FµpFνpzqq.

Romuald Lenczewski
Operatorial subordination in free probability and loop products of graphs



Freeness with subordination

Assumptions:
1 pA, ϕ, ψq – unital algebra with a pair of linear normalized

functionals
2 A1 – unital subalgebra of A
3 A2 – non-unital subalgebra with an ‘internal’ unit 12, i.e.

12b “ b “ b12 for every b P A2.
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Freeness with subordination

Definition
The pair pA1,A2q is free with subordination, or s-free, with respect
to pϕ,ψq, where ψp12q “ 1, if
(ii) ϕpa1a2 . . . anq “ 0 whenever aj P A0

ij
and i1 ‰ i2 ‰ . . . ‰ in

(ii) ϕpw112w2q “ ϕpw1w2q ´ ϕpw2qϕpw2q for any
w1,w2 P algpA1,A2q,

where A0
1 “ A1 X kerϕ and A0

2 “ A2 X kerψ.
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Orthogonal additive convolution

Definition
Let µ and ν be probability measures. The orthogonal additive
convolution is defined by the reciprocal Cauchy transform

Fµ$ νpzq “ FµpFνpzqq ´ Fνpzq ` z

Equivalently,

Kµ$ νpzq “ KµpFνpzqq “ Kµpz ´ Kνpzqq
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Orthogonal independence

Definition
Let pA, ϕ, ψq be unital algebra with a pair of linear normalized
functionals and let A1,A2 be non-unital subalgebras of A. We say
that A2 is orthogonal to A1 with respect to pϕ,ψq if

ϕpbw2q “ ϕpw1bq “ 0
ϕpw1a1ba2w2q “ ψpbqϕpw1a1a2w2q

´ ψpbqϕpw1a1qϕpa2w2q

for any a1, a2 P A1, b P A2 and any elements w1,w2 of the unital
algebra algpA1,A2q.
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Decompositions of µ i ν and µ ‘ ν

Theorem [R.L. 2006]

If µ, ν PMR`
are compactly supported, then we have ‘complete’

decompositions

µi ν “ µ $ pν $ pµ $ pν $ . . .qqqq

µ‘ ν “ µ Ź pν $ pµ $ pν $ . . .qqqq

where the right hand side is understood as the weak limit.
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Decompositions of µ i ν and µ ‘ ν

Corollary
The transforms of µi ν and µ‘ ν can be written in the ‘continued
composition form’

Kµi νpzq “ Kµpz ´ Kνpz ´ Kµp. . .qqq

Fµ‘ νpzq “ Fµpz ´ Kνpz ´ Kµp. . .qqq

where the right-hand side is understood as the uniform limit on
compact subsets of C`.
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Operatorial subordination

Theorem [R.L. 2006]

If X ,Y P BpHq are free and self-adjoint, where H “ H1 ˚H2, then
one can construct self-adjoint operators s, S P BpHq such that
(i) X ` Y “ s ` S
(ii) ϕ–distribution of s is µ
(iii) ϕ–distribution of S is ν i µ
(iv) ps, Sq is monotone independent w.r.t. ϕ.
Moreover, there exists a sequence of orthogonally independent
operators corresponding to the ‘complete’ decomposition of µ‘ ν.
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Additive convolutions versus G1IG2

We have the following correspondence between additive
convolutions or probability measures on the real line and products
of rooted graphs"’

1 monotone - µ Ź ν - comb product
2 boolean - µZ ν - star product
3 free - µ‘ ν - free product
4 orthogonal - µ $ ν - orthogonal product
5 s-free - µi ν - s-free product
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Addition theorem

Theorem [Accardi, R.L., Sałapata 2006]

Let G1IG2 be naturally colored and let µ, ν be spectral distributions
of G1,G2. If I stands for monotone, boolean, orthogonal, s-free and
free, and Z is the adjacency matrix of G1IG2, then

ϕpZnq “ Mµ`Iνpnq “ |Wnpeq|.

where Wnpeq is the set of rooted walks on G1IG2 of length n.
Moreover, if Z “ S1 ` S2 is the decomposition induced by the
coloring, then pS1,S2q is I-independent.
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Transforms

Let µ be a probability measure on R` “ r0,8q and z P CzR`.
Useful transforms for multiplicative convolutions:

1

ψµpzq “

ż

R`

zt

1´ zt
dµptq “

8
ÿ

n“1

µpX nqzn

2

ηµpzq “
ψµpzq

1` ψµpzq

3

ρµpzq “
ηµpzq

z
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Analytic subordination for µ b ν

Theorem [Biane 1998]

For probability measures µ, ν on R` it holds that

ηµb ν “ ηµpη1pzqq “ ηνpη2pzqq

for z P CzR`, where η1, η2 are η-transforms of some probability
measures on R`.
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Convolution µ m ν

Definition
The functions η1 and η2 define unique probability measures on R`
which are not concentrated at zero. This gives a binary operation
m on MR`

ztδ0u, namely

η1pzq “ ηνmµpzq and η2pzq “ ηµm νpzq.

The convolution µm ν is called the s-free multiplicative convolution.
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Subordination reformulated

Proposition
The subordination equations can be written in terms of s-free
multiplicative convolutions as

µb ν “ µ œ pν m µq “ ν œ pµm νq

since the monotone multiplicative convolution (Bercovici) is defined
by the equation

ηµœνpzq “ ηµpηνpzqq

for z P CzR` and µ, ν PMR`
.
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Decomposition of µ m ν and µ b ν

Theorem [R.L. 2007]

For compactly supported µ, ν PMR`
, we have complete

decompositions

µ m ν “ µ=pν=pµ=pν=p. . .qqqq,

µ b ν “ µ œ pν=pµ=pν=p. . .qqqq,

and their transforms can be written in the ‘continued composition
form’:

ρµm νpzq “ ρµpzρνpzρνpzρµp. . .qqqq,

ηµb νpzq “ ηµpzρνpzρµpzρνp. . .qqqq,

where the right-hand sides are understood as the uniform limits on
compact subsets of CzR`.
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Operatorial subordination

Theorem [R.L. 2007]

If X ,Y P BpHq are positive and free, where H “ H1 ˚H2, then
there exist positive z ,Z such that
(i)

?
XY

?
X “

?
z Z
?
z

(ii) ϕ–distribution of z is µ
(iii) ϕ–distribution of Z is ν m µ
(iv) pz ´ 1,Z ´ 1q is monotone independent w.r.t. ϕ.
Moreover, there exists a sequence of orthogonally independent
operators corresponding to the ‘complete’ decomposition of µb ν.
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Multiplicative convolutions versus G1I`G2

We have the following correspondence:
1 monotone independence - µ œ ν - comb loop product
2 boolean independence - µf ν - star loop product
3 freeness - µb ν - free product
4 orthogonal independence - µ=ν - orthogonal loop product
5 s-freeness - µm ν - s-free loop product
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Comb loop product of graphs
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Star loop product of graphs
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Orthogonal loop product of graphs
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s-free loop product of graphs
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Free product of graphs
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Multiplication theorem

Notations:
1 G1I`G2 naturally colored loop product of graphs corresponding

to I-independence
2 µ, ν – spectral distributions of G1,G2

3 D2npeq – rooted alternating double return walks on G1I`G2 of
length 2n.

Theorem [R.L. 2007]

If I refers to monotone, boolean, orthogonal, s-free and free
independence, and Z is the adjacency matrix of G1I`G2, then

NZ pnq “ Nµ1ˆIµ2pnq “ |D2npeq|.

Moreover, if Z “ R1 ` R2 is the decomposition induced by the
coloring, then pR1 ´ 1,R2 ´ 1q is I-independent.
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